- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Arslanturk, Suzan (2)
-
Zhou, Kaiyue (2)
-
Dong, Ming (1)
-
Draghici, Sorin (1)
-
Kottoori, Bhagya Shree (1)
-
Munj, Seeya Awadhut (1)
-
Zhang, Zhewei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent supervised point cloud upsampling methods are re-stricted by the size of training data and are limited in terms of covering all object shapes. Besides the challenges faced due to data acquisition, the networks also struggle to gener-alize on unseen records. In this paper, we present an internal point cloud upsampling approach at a holistic level referred to as “Zero-Shot” Point Cloud Upsampling (ZSPU). Our approach is data agnostic and relies solely on the internal infor-mation provided by a particular point cloud without patching in both self-training and testing phases. This single-stream design significantly reduces the training time by learning the relation between low resolution (LR) point clouds and their high (original) resolution (HR) counterparts. This association will then provide super resolution (SR) outputs when origi-nal point clouds are loaded as input. ZSPU achieves com-petitive/superior quantitative and qualitative performances on benchmark datasets when compared with other upsampling methods.more » « less
-
Zhou, Kaiyue; Kottoori, Bhagya Shree; Munj, Seeya Awadhut; Zhang, Zhewei; Draghici, Sorin; Arslanturk, Suzan (, Biology)Studies over the past decade have generated a wealth of molecular data that can be leveraged to better understand cancer risk, progression, and outcomes. However, understanding the progression risk and differentiating long- and short-term survivors cannot be achieved by analyzing data from a single modality due to the heterogeneity of disease. Using a scientifically developed and tested deep-learning approach that leverages aggregate information collected from multiple repositories with multiple modalities (e.g., mRNA, DNA Methylation, miRNA) could lead to a more accurate and robust prediction of disease progression. Here, we propose an autoencoder based multimodal data fusion system, in which a fusion encoder flexibly integrates collective information available through multiple studies with partially coupled data. Our results on a fully controlled simulation-based study have shown that inferring the missing data through the proposed data fusion pipeline allows a predictor that is superior to other baseline predictors with missing modalities. Results have further shown that short- and long-term survivors of glioblastoma multiforme, acute myeloid leukemia, and pancreatic adenocarcinoma can be successfully differentiated with an AUC of 0.94, 0.75, and 0.96, respectively.more » « less
An official website of the United States government
